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SUMMARY

A Direct-SIMPLE scheme is further extended for numerical simulations of heat and species mass
transfer, and liquid �ow behaviours in solidi�cation processes of shaped alloy castings under various
electromagnetic (EM) �elds, based on a binary continuum model (a solidi�cation transport phenomena=
processes (STP)-based dendrite solidi�cation model). Unlike in a SIMPLE scheme, no iterative computa-
tions are needed to achieve the �nal pressure and velocity corrections in the extended
Direct-SIMPLE procedure, therefore extremely high computational e�orts can be avoided. Using three
di�erent types of model alloys, pseudo-binary In718 base-4:85wt% Nb, �(TiAl)-55 at% Al and Al-
4:5wt% Cu systems, sample computations for solving strongly coupled solidi�cation transport phenom-
ena in directionally solidifying shaped castings under static and harmonic EM-�elds of di�erent strengths
are carried out, to demonstrate the feasibility and e�cient calculation performance of the present model
and numerical methods. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: extended Direct-SIMPLE scheme; continuum model; primitive variable form; electro-
magnetic-=gravity-=solidi�cation-shrinkage-driven �ow; solidi�cation transport pheno-
mena; directional solidi�cation of shaped alloy castings

INTRODUCTION

Electromagnetic (EM) techniques have been applied to materials processing and metallurgi-
cal processes since the past half century or so, and nowadays are showing wider application
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backgrounds in materials processing, called electromagnetic processing of materials (EPM)
[1–3]. A major �eld in EPM is in controlled solidi�cation processes of metallic alloy ma-
terials with various EM techniques applied. This can be seen in direct-chill (DC) casting,
or continuous casting of Al alloy and steel ingots with alternating EM inductors or EM
stirrers=brakes for meniscus shapes and melt �ow controls [4–6], or with combined static and
alternating EM �elds applied for solidi�cation structure re�ning [7].
In such EPM applications, magnetohydrodynamics (MHD) phenomena [1, 2, 5] play im-

portant roles in attaining the quality controls of the metallic alloy products, which in fact
can be classi�ed as special �uid �ow phenomena in solidi�cation processes under various
EM �elds or Lorentz forces applied. Therefore, for computer modelling of the heat energy,
species mass and momentum transport processes in an alloy solidi�cation system under an EM
�eld, extra numerical solution e�orts may need to account for such EM in�uences (namely
the Lorentz forces). This is particularly important in achieving an e�cient solidi�cation trans-
port phenomena=processes (STP) simulation because the numerical solution to the strongly
pressure-linked liquid �ow usually takes the greatest portion of the entire computational
e�ort.
In a previous computer model for the transport phenomena in a binary dendrite solidi�cation

process based on a continuum formulation [8], the present authors proposed a numerical
method for direct solution of strongly pressure-linked �ow problems which are induced by
both the gravity and solidi�cation-shrinkage forces [9]. The aim of the present paper is to
extend the continuum model and the corresponding numerical solution methods to a more
general STP case that is under the in�uence of an arbitrary EM �eld. Example computations
for the liquid �ow behaviours under both the gravity and static=harmonic EM �elds, and the
heat and solute mass transfers in the solidi�cation transport processes of shaped alloy castings
will be performed to demonstrate the feasibility and computational e�ciency of the extended
solidi�cation model and numerical methods.

MODEL AND NUMERICAL ALGORITHMS

EM solidi�cation model

For a numerical description of macroscopic dendrite STP in alloy castings and ingots, it is
convenient to adopt a continuum model to start the computer modelling [8, 10]. With the
assumptions of

(1) the external forces involved in a solidifying system are gravity and Lorentz force;
(2) no pores will occur, i.e. the geometric continuity, fL +fS =1, holds for any region in

the casting=ingot domain;
(3) the solid phase is macroscopically static during solidi�cation;
(4) local thermodynamic equilibrium holds at the microscopic solid–liquid interfaces;
(5) Newtonian and laminar liquid �ow present; and
(6) the model alloy is a binary system;

the mathematical model for the present numerical modelling includes the following
equations:
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Solidi�cation heat energy transfer:

@[(�cP)mT ]=@t +∇(fL�LcPLVT )=∇[�m∇T ] + �Sh(@fS=@t) + qJ (1)

where the electromagnetically inducted Joule heat is given by

qJ =JG ·E=J2G=� (2)

Solidi�cation solute mass transfer:

@(�C)m=@t +∇(fL�LVCL)=∇[DL∇(fL�LCL) +DS∇(fS�SCS)] (3)

where [10]:

@(�C)m=@t = (�SCS)∗@fS=@t +�fS@(�SCS)∗=@t + (�LCL)@fL=@t + fL@(�LCL)=@t (4)

� = �’=(1 + �’)

’ = (DS(T )=Rf)� ·A2N
� = k(1 + �)fS=f2L

Liquid–solid phase-change characteristic function for a speci�c binary alloy

TLiq =TLiq(C∗
L) (5)

Solidi�cation mass conservation:

@�m=@t= − ∇(fL�LV) (6)

where [11]:

@�m=@t≈�∗
S@fS=@t +�fS@�

∗
S=@t + �L@fL=@t + fL@�L=@t (7)

Momentum transfer for bulk/interdendritic liquid �ow:

@(fL�LV)=@t +∇[(fL�LV) ·V]=∇[�∇(fLV)]− ∇(fLP)− (�f2L =K)V+ FB (8)

For the present modelling, the body force term induced by external �elds includes the gravity
and Lorentz force:

FB =fL�Lg+ FL (9)

where the Lorentz force acting on the moving liquid phase during solidi�cation can be further
expressed as:

FL =�fL(E+V×B)×B=fL{JG ×B+ �[(V ·B)B− B2V]} (10)

In the above macroscopic solidi�cation transport model, Equation (4) gives an expression
for the time-di�erential mixture-averaged composition (TDMAC) term for a dendrite solidi-
�cation process with any solid back-di�usion (SBD) inside the growing dendrites and with
discretionary dendrite morphology. The non-dimensional parameters ’ and � represent a den-
dritic geometry-modi�ed Fourier di�usion number and the sensibility of the interdendritic-
liquid-concentration variation in response to (or, dendritic solidi�cation-starting=ending e�ects
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Figure 1. Schematic directional solidi�cation con�guration for a shaped alloy
casting under an inducted EM �eld.

on) the SBD [10], respectively. Equation (7) was proposed with a similar microscopic mod-
elling to Equation (4) for the time-di�erential mixture averaged density (TDMAD) term in
the solidi�cation mass-conservation equation (6) [11].
For the in�uences of EM-�elds on the solidi�cation transport processes, the extended con-

tinuum model of Equations (1)–(10) shows that the time- and position-dependent �elds of
magnetic �ux density B and electromagnetically inducted current JG in the alloy casting=ingot
domain of interest need to be instantaneously determined. Maxwell’s equations and the cor-
responding constitutive relationships for the related media including the moving alloy melts
provide such mathematical equations, as those listed in Tables XV and XVI in Reference
[12].
A two-dimensional (2-D) solidi�cation con�guration for shaped binary castings under an

EM-�eld in the present model is shown in Figure 1. The blade-like alloy casting in a shell
mould directionally solidi�es upwards. The applied EM-�eld can be either transverse static
ones of di�erent strengths, or vertical harmonic of di�erent frequencies and strengths inducted
by coils that move upwards at a speed of V0 relatively to the casting=shell mould=water cooler.
For a 2-D EM solidi�cation transport problem in the y-o-z rectangular co-ordinates system

depicted in Figure 1, the expressions for the Joule heat and Lorentz force, Equations (2) and
(10), can be reduced to

qJ = J 2G|x=� (11)
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and

FL|y = fL{−JG|xBz + �[(V ·B)By − B2Vy]} (12)

FL|z = fL{JG|xBy + �[(V ·B)Bz − B2Vz]} (13)

respectively (for the present 2-D modelling case: JG|y= JG|z ≡ 0, Bx ≡ 0, Vx ≡ 0 and FL|x ≡ 0).

Numerical formulae and procedures for the model solution

The same 2-D meshing pattern and co-ordinate system for a casting=ingot domain as illustrated
in Reference [13, Figure 2] is used for the present numerical approaches. The 2-D continuum
model-based numerical formula for the heat energy transport for a control volume [j; k] can
be derived as

T i+1
′

j; k = {TF0 ·T ij; k −�ti+1{cipLj; k[(TVY1− TVY2)=�yj + (TVZ1− TVZ2)=�zk]

−[(TDY1− TDY2)=�yj + (TDZ1− TDZ2)=�zk]− qi+1J }}=TF1 (14)

where the electromagnetically inducted Joule heat can be numerically calculated by:

qi+1J =(J i+1G|x )
2=� (15)

The terms of TVY1, TVY2, TVZ1, TVZ2, TDY1, TDY2, TDZ1, TDZ2, TF0 and TF1 in
Equation (14) take the same expression forms as those listed in Reference [13]. The latent heat
release term for the liquid–solid phase change is temporally omitted in Equation (14) and will
be numerically treated later by an iterative solution procedure for the instantaneous T−fS−CL
coupling. The adopted T−fS−CL coupling solution method, previously proposed in Reference
[13] has been recently extended to a more general solidi�cation case to accommodate any
microscopic SBD and dendrite morphologies [11, 14] and shown to be available and e�cient
for three-dimensional (3-D) [15], or multi-component [16] solidi�cation cases. Furthermore,
the temperature- and composition-dependent alloy properties for di�erent phases in Equation
(1), such as the speci�c heats, cPL(T; C)=cPS(T; C), and the thermal conductivity, �m(T; C),
etc, have been taken into account.
The 2-D numerical formula for the solidi�cation solute mass transport, derived based on

Equations (3) and (4) for the control volume [j; k], has a similar expression form to Equation
(9) of Reference [13] with the corresponding modi�cations for the solid di�usions [14].
Based on the same staggered control volumes as illustrated in Figure 2 of Reference [9]

and similar discretization and formulation procedures, the numerical calculation equations for
the 2-D momentum transports and mass continuity of the alloy melt �ow during solidi�cation
under a magnetic �eld can be derived as follows:
Component of mass-�ow in y direction

RFVYi+1j+1=2; k = {RFVYij+1=2; k −�ti+1[(VVY1− VVY2− VDY1 + VDY2 + VYP)=�yj+1=2

+ (VVZ1− VVZ2− VDZ1 + VDZ2)=�zk +VYFL]}=VF1 (16)
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where

VYFL = {(fLJG|xBz)i+1=2 − [�(fLVyBy + fLVzBz)]iBi+1=2y }j+1=2; k (17)

VF1 = 1 +�ti+1{[(fL�)=K + �(B2y + B2z )]=�L}i+1j+1=2; k (18)

The terms of VVY1, VVY2, VVZ1, VVZ2, VDY1, VDY2, VDZ1, VDZ2 and VYP in
Equation (16) have the same expression forms as those expressed in Reference [9].
Component of mass-�ow in z direction

RFVZi+1j; k−1=2 = {RFVZij; k−1=2 −�ti+1[(VVY3− VVY4− VDY3 + VDY4)=�yj
+(VVZ3− VVZ4− VDZ3 + VDZ4 + VZP)=�zk−1=2 + VZG + VZFL]}=VF2

(19)

where

VZFL = −{(fLJG|xBy)i+1=2 + [�(fLVyBy + fLVzBz)]iBi+1=2z }j; k−1 (20)

VF2 = 1 +�ti+1{[(fL�)=K + �(B2y + B2z )]=�L}i+1j; k−1=2 (21)

Again, the terms of VVY3, VVY4, VVZ3, VVZ4, VDY3, VDY4, VDZ3, VDZ4, VZP and
VZG in Equation (19) take the same expression forms as those in Reference [9].
It should be noted that the numerical �ow momentum formulae of Equations (16) and

(19) take a semi-implicit �nite-di�erence form. The numerical terms of pressure di�erence
and Darcy resistance are set at the time level of ti+1, in addition to the numerical Lorentz
and gravity forces taken at time ti+1=2 (ti+1=2 time’s gravity force is known at ti+1), while the
numerical convection and viscous di�usion terms are chosen at time ti [9].
The solidi�cation mass continuity Equation (6)=(7) is discretized into the following

full-implicit numerical formula:

[(�∗
S�fS)

i+1
j; k +�

i
j; kf

i
Sj; k(�

∗i+1
Sj; k − �∗i

Sj; k) + (�LfL)
i+1
j; k − (�LfL)ij; k]�yj�zk=�ti+1

+�zk(RFVYi+1j+1=2; k − RFVYi+1j−1=2; k) +�yj(RFVZ
i+1
j; k−1=2 − RFVZi+1j; k+1=2)

=0 (j; k=1; 2; 3; : : :) (22)

Decompose the relative pressure of ti+1 time in the numerical momentum Equations (16)
and (19) into two terms, i.e. to be expressed as a sum of the relative pressure at time ti

and the pressure change in the time interval �ti+1(= ti+1 − ti):

(fLP)i+1j; k =(fLP)
i
j; k +�(fLP)

i+1
j; k (23)

Furthermore, separate the ti+1 time’s super�cial mass-�ow-rates in y and z directions,
RFVYi+1j+1=2; k and RFVZ

i+1
j; k−1=2, into some approximate values, RFVY

i+1∗
j+1=2; k and RFVZ

i+1∗
j; k−1=2,
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and correction ones, RFVYi+1
′

j+1=2; k and RFVZ
i+1′
j; k−1=2, respectively, i.e.

RFVYi+1j+1=2; k =RFVY
i+1∗
j+1=2; k +RFVY

i+1′
j+1=2; k (24)

RFVZi+1j; k−1=2 = RFVZ
i+1∗
j; k−1=2 + RFVZ

i+1′
j; k−1=2 (25)

In the present model, a similar mathematical treatment to that proposed in Reference
[9, Equations (7′′) and (12a)] is adopted, so that RFVYi+1

∗
j+1=2; k and RFVZ

i+1∗
j; k−1=2 can have a

de�nite physical meaning: they present the approximate super�cial mass-�ow-rates at ti+1 that
are calculated by Equations (16) and (19), respectively, but using the ti time’s pressure �eld,
(fLP)ij; k (j; k=1; 2; 3; : : :), instead of the unknown pressure di�erence terms at t

i+1, VYP and
VZP, and with the approximate terms of Darcy resistance and magnetic deceleration [12] due
to the liquid �ows of RFVYi+1

∗
j+1=2; k and RFVZ

i+1∗
j; k−1=2 (see Equations (10), (18) and (21)). At

the same time, the super�cial mass-�ow-rate corrections, RFVYi+1
′

j+1=2; k and RFVZ
i+1′
j; k−1=2, can be

explicitly determined by:

RFVYi+1
′

j+1=2; k =−�ti+1[�(fLP)i+1j; k+1 −�(fLP)i+1j; k ]=(�yj+1=2 ·VF1j+1=2; k) (26)

RFVZi+1
′

j; k−1=2 =−�ti+1[�(fLP)i+1j; k−1 −�(fLP)i+1j; k ]=(�zk−1=2 ·VF2j; k−1=2) (27)

Note that in Equations (26) and (27), the terms, VF1j+1=2; k and VF2j; k−1=2, take the same
forms as Equations (18) and (21), i.e. under the in�uences of both the Darcian and EM
resistances [12].
Now, it is known that the ti+1 time’s super�cial mass-�ow-rates must meet the solidi�cation

mass continuity equation at time ti+1 [9, 17], therefore, substitute Equations (24) and (25) into
Equation (22) for RFVYi+1j+1=2; k and RFVZ

i+1
j; k−1=2, respectively, and then Equation (22) changes

into:

�zk(RFVYi+1
′

j+1=2; k − RFVYi+1′
j−1=2; k) +�yj(RFVZ

i+1′
j; k−1=2 − RFVZi+1′

j; k+1=2)

= − RESi+1j; k (j; k=1; 2; 3; : : :) (28)

where

RESi+1j; k = [(�
∗
S�fS)

i+1
j; k +�

i
j; kf

i
Sj; k(�

∗i+1
Sj; k − �∗i

Sj; k) + (�LfL)
i+1
j; k − (�LfL)ij; k]�yj�zk=�ti+1

+�zk(RFVYi+1
∗

j+1=2; k − RFVYi+1∗
j−1=2; k) +�yj(RFVZ

i+1∗
j; k−1=2 − RFVZi+1∗

j; k+1=2) (29)

represent mass residuum produced by only putting the approximate super�cial mass-�ow-rates,
RFVYi+1

∗
j+1=2; k and RFVZ

i+1∗
j; k−1=2, into Equation (22), which re�ects the extent of meeting the mass

continuity equation with these approximate velocity components. Refer to the Equations (24)
and (25) with mathematical treatment similar to that of Reference [9], Equations (28) and
(29) clearly indicate that these mass residuum should and can be fully balanced by the mass-
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�ow-rate corrections, RFVYi+1
′

j+1=2; k and RFVZ
i+1′
j; k−1=2. Finally, substitute Equations (26) and (27)

into Equation (28), the linear equations for the pressure change �eld during the time increment
�ti+1 are obtained as follows:

ai+1j; k �(fLP)
i+1
j; k − ai+1j−1=2; k�(fLP)i+1j−1; k − ai+1j+1=2; k�(fLP)i+1j+1; k − ai+1j; k+1=2�(fLP)i+1j; k+1

− ai+1j; k−1=2�(fLP)i+1j; k−1 = bi+1j; k (j; k=1; 2; 3; : : :) (30)

where the corresponding coe�cients can be written as

ai+1j−1=2; k = �zk={�yj−1=2{1 +�ti+1{[(fL�)=K + �(B2y + B2z )]=�L}i+1j−1=2; k}}

ai+1j+1=2; k = �zk={�yj+1=2{1 +�ti+1{[(fL�)=K + �(B2y + B2z )]=�L}i+1j+1=2; k}}

ai+1j; k+1=2 = �yj={�zk+1=2{1 +�ti+1{[(fL�)=K + �(B2y + B2z )]=�L}i+1j; k+1=2}}

ai+1j; k−1=2 = �yj={�zk−1=2{1 +�ti+1{[(fL�)=K + �(B2y + B2z )]=�L}i+1j; k−1=2}}

ai+1j; k = a
i+1
j−1=2; k + a

i+1
j+1=2; k + a

i+1
j; k+1=2 + a

i+1
j; k−1=2

bi+1j; k = −RESi+1j; k =�ti+1

Like many other engineering problems, the set of linear Equations (30) has a coe�cient ma-
trix containing sparse elements. However, an important characteristic of this coe�cient matrix
that should be pointed out is that all the initially non-zero elements will change signi�cantly
with the solidi�cation proceeding in an alloy ingot=casting domain. This is primarily caused
by the Darcian resistances in the varying mushy (i.e. S+L) region. In the linear equation
matrix, an o�-diagonal coe�cient corresponds to a staggered control volume, e.g. ai+1j−1=2; k ⇔
volume [j − 1=2; k]. The Darcian resistance term, i.e. (fL�)=(K�L), in such an o�-diagonal
coe�cient can take a value from zero when the control volume is initially in a pure liquid
state, to approaching in�nity when the volume is nearly completely solidi�ed, which in turn
leads this coe�cient to take a small value → zero.
Similarly, for a casting=ingot solidi�cation case under a very strong EM-�eld, the coe�-

cient matrix of Equations (30) may become even more di�cult to numerically solve. Generally
speaking, in an alloy solidi�cation process, each part (each control volume) of the shaped
casting=ingot will solidify at di�erent times, and an EM-�eld, especially inducted by an alter-
nating current, may be highly uneven. Through the numerical sample computations for 2-D
solidi�cation transport processes in various shaped castings and ingots (zero EM-�eld) im-
plemented in References [9, 11, 13, 14, 16, 18] etc, it has been shown that an under-relaxation
Gauss–Seidel algorithm is a convenient method to numerically solve the relevant linear equa-
tions similar to Equations (30). In the present work, the same method will be adopted to
solve the Equations (30) for the solidi�cation transport processes under di�erent EM-�elds.
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RESULTS AND DISCUSSIONS

Comparison of the present V-P numerical solution scheme with SIMPLE method

To show the advantages and performance of the present numerical solution method described
in the previous section, the authors’ algorithm is compared with the SIMPLE scheme, which
was proposed in the early 1970s [17, 19], and is widely used for solving the pressure-linked
velocity problem in a �uid system. First, it should be pointed out that derivation of the present
V-P coupling solution scheme starts with the same numerical treatment techniques as in
SIMPLE method. Both the numerical methods separate the pressure and �ow velocity at a
new time level of ti+1 into some approximate values and corrections as a basic procedure for
the numerical solution, in primitive variable forms, to the pressure-linked momentum transfer
and mass continuity equations.
However, through the present numerical-solution scheme derivation, all the separated parts

of the pressure and mass-�ow-rate components at a new time ti+1 in Equations (23)–(25),
have the distinct physical de�nitions, in particular the explicit mass-�ow-rate corrections,
i.e. Equations (26) and (27), are given. The importance of the derived mass-�ow-rate cor-
rection formulae of Equations (26) and (27) is that, unlike in the SIMPLE scheme [17],
no iterative computations will be required for the velocity corrections or the new relative
pressure at ti+1 (Equation (23)), if the pressure change �eld in the time increment �ti+1,
�(fLP)i+1j; k (j; k=1; 2; 3; : : :), is known, so that extremely high computational e�orts can be
avoided, especially for a 3-D solidi�cation case with small mesh sizes. Through solving the
linear algebraic Equations (30), the pressure change �eld during the time of �ti+1 can be
directly determined, as a result, the �nal (numerically accurate) relative pressure and velocity
�elds at the new time ti+1 can be immediately achieved using the Equations (23)–(27).
Furthermore, the present numerical method is fully available for solving a heat, mass and

momentum transfer problem in a �uid system that the SIMPLE scheme can do [17, 19],
but with high numerical solution e�ciency. This can be easily seen by simply setting the
liquid volume fraction fL(t; x; y; z)≡ 1 and the EM-�eld B(t; x; y; z)≡ 0=JG(t; x; y; z)≡ 0 in
the present solidi�cation model of Equations (1)–(10), and all the corresponding numerical
Equations (14)–(30) (i.e. no solidi�cation allowed and no EM-�eld applied) for the entire
transport domain of interest.
Finally, in the present numerical scheme, although the mass continuity Equation (6)=(7)

is discretized into a fully implicit �nite-di�erence form, i.e. Equation (22), the numerical
formulae derived for solving the Pressure-Linked mass-�ow-rate Equation (8), i.e. Equations
(16)–(21), are Semi-IMplicit ones, as pointed out in the previous section. Therefore, the
present numerical algorithm may be named as a direct-SIMPLE method with extensions to
account for dendrite solidi�cation processes (varying Darcian resistances from the growing
dendrite network) and EM-�eld in�uences, or ‘extended Direct-SIMPLE’ for short.

Sample computations

For the EM directional solidi�cation con�guration of shaped alloy castings schematically
illustrated in Figure 1, three groups of sample simulations for the solidi�cation transport
phenomena under di�erent EM-�elds are presented to demonstrate the feasibility and per-
formances of the present extended direct-SIMPLE algorithm. In the following computation
examples, three di�erent types of alloys, i.e. pseudo-binary In718 base-4:85wt% Nb [20],
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Table I. Initial and technological parameters for the present example simulations.

Alloys In718 base-4:85wt% Nb �(TiAl)-55 at% Al Al-4:5wt% Cu

Pouring temperature, TP 1450◦C 1500◦C 700◦C
Initial mould temperature, TM 1500◦C 1550◦C 700◦C
Heating zone temperature, Th 1600◦C 1600◦C 950◦C
Cooling zone temperature, TC 45◦C 45◦C 25◦C
Bottom cooler temperature, TBC 45◦C 45◦C 25◦C
Withdrawal velocity, V0 0:15mm=s 0:15mm=s 0:15mm=s

Al-4:5wt% Cu and �(TiAl)-55 at% Al are used as the modelling alloys. In the former two
alloys, the solute Nb and Cu have higher densities than that of their base alloys, respec-
tively, and in �(TiAl)-55:0 at% Al binary alloy the Al solute is lighter than the stoichiometric
�(TiAl)-phase. The shell moulds for the three alloys are all made of CaO. The STP-related
temperature=composition-dependent properties used for the present modelling alloys are same
as those listed in References [11, 21, 22]. Table I gives a list of the initial and technological
parameters for the present example simulations.
The mesh pattern for a half of shaped casting and one side of the shell mould as illus-

trated in Figure 1 is the same as that shown in Reference [11] with 1680 and 936 meshed
elements for the casting and mould domains, respectively. All the alloy melted in the casting
domains are assumed to be static and of uniform temperature at the start of withdrawal and
cooling. The numerical computations for the �eld evolutions of temperature, concentration,
solid-volume fraction, liquid pressure and �ow velocity vectors, etc in the EM directional
solidi�cation processes of the shaped castings are implemented by a PC computer-based code
[11], which has been further revised for the present work. The magnetic �ux density B
and inducted current JG in the alloy casting=ingot domains are calculated using ANSYS 6.1
software.¶ The FEM analysis results of B and JG output from ANSYS 6.1 are converted into
FDM-formatted data �les that can be read as input data by the authors’ computation program
for the present FDM-based STP simulations [22].
A full set of simulated results for the major �elds involved in an EM directional solidi-

�cation transport process of a shaped alloy casting is shown in Figure 2. These calculated
results for the pseudo-binary In718 base-4:85wt% Nb alloy solidi�ed under a harmonic EM-
�eld (2× 104 Hz, 1× 104 A t) at 10:06 s include the converted magnetic �ux density vectors
from the ANSYS-FEM analysis, the calculated Lorentz force vectors and its y-=z-component
contours, contours of inducted Joule heat, velocity vectors and contours of relative pressure in
liquid phase, and distributions of isosolid-volume fraction, isotherm and liquid isoconcentra-
tion. Due to the relatively high frequency of the alternating EM-�eld inducted in the solidifying
casting, a skin-e�ect [12] for both the inducted magnetic �ux density and Joule heat occurs,
especially in the surface region of the lower block part of casting, see Figures 2(a) and 2(e).
These phenomena in turn induce much larger Lorentz forces and liquid circulation velocities
in the lower surface layer than any other region, Figures 2(b) and 2(f). Furthermore, due to

¶ANSYS is a trademark of ANSYS, Inc., Pittsburgh, U.S.A.
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the very fast circulation in the lower block bottom (there are two opposite rotating directions),
some negative pressures holes form there, see Figure 2(g). The isotherm and isoconcentration
lines are also led to approximately follow the liquid streamlines, Figures 2(i) and 2(j), except
in the solidi�cation region as described in Figure 2(h). In the solidi�cation region, the solute
concentration of the interdendritic liquid can rise as high as 15wt% Nb because its partition
coe�cient is less than unity.
One of the important interactions between an applied magnetic �eld and a moving alloy

melt is �ow suppression or EM brake (EMBR) [1, 12]. This EMBR e�ect can be explic-
itly and primarily expressed by the last term on the far right-hand side of Equation (10),
i.e. −fL�(B2V) term (from which it can be seen that the EMBR force is primarily pro-
portional to Re(B ·B∗) and to V, respectively). Figure 3 shows a group of simulation re-
sults to demonstrate such EMBR e�ects on the alloy melt �ow in solidi�cation processes.
In the directional solidi�cation case shown by Figure 3 for an Al-4.5% Cu shaped casting,
a transverse static magnetic �eld of di�erent strengths, 0, 500, 103, 2:5× 103 and 104 A t, is
applied. The calculation results for the �ow velocity vectors, the relative pressure distribu-
tion in the liquid phase, the isosolid-volume fraction distribution, and contours of temperature
shown in Figure 3 are all at a cooling=solidi�cation time of 21:0 s. At this moment, about
two thirds of the bottom block of the shaped casting is in a solid–liquid coexisting state
(i.e. S+L zone).
In Figure 3, the simulated results with the zero magnetic �eld applied represent the direc-

tional solidi�cation case that occurs only under downward gravity. It can be seen that, under
this condition, several natural convection loops exist in the pure liquid region of the solidi-
fying casting, and a downward interdendritic feeding �ow occurs in the S+L region [9, 18].
The maximum velocities of these two kinds of liquid �ow are 3.13 and 5:67× 10−2 mm=s,
respectively; see Figure 3(a), the 0A t case. The corresponding relative pressure distribu-
tion is shown in Figure 3(b) of 0A t case, from which it can be seen that the pressure
variation in the pure liquid region is pretty small because the natural convection there is
weak. However, in its S+L region, the liquid pressure changes from ∼ 0 Pa downward to
about −5000 Pa. This large pressure gradient is necessary to drive the interdendritic
liquid phase to overcome the Darcian resistance for feeding the solidi�cation shrinkage oc-
curring over the entire wide S+L region [9], even though the feeding �ow velocity is
quite low.
When the strength of the applied static magnetic �eld increases from 0A t continuously

to 104 A t, from Figure 3(a) it can be seen that remarkable EMBR e�ects on the natural
convection in the pure liquid region of the directionally solidifying casting takes place. The
maximum velocity of the natural convection decreases gradually from 3:13mm=s for the zero
magnetic case to 0:354mm=s for the case of 104 A t magnetic �eld applied, i.e. almost a
decrease of one order of magnitude. However, it is interesting to see that, no matter how
strong the static magnetic �eld is applied, the velocity magnitude of the interdendritic-liquid
feeding �ow in the solidi�cation region basically remains the same. This phenomenon, along
with the large pressure gradients exhibited in the S+L region of Figure 3(b), implies that
solidi�cation shrinkage can act as a very strong inner force. From Figure 3(a) it also can
be seen that, when the applied magnetic strength higher than ∼ 2500A t, the natural con-
vection basically has been completely suppressed. Instead, the �ow in the pure liquid re-
gion is driven only by the solidi�cation shrinkage that occurs in the S+L region, in order
to meet the mass conservation for the entire solidifying casting domain, as described by
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Figure 4. Comparison of the directional solidi�cation transport behaviours of �(TiAl)-55 at% Al shaped
casting under harmonic magnetic �elds inducted by di�erent current-turns (20 kHz) at t=21:0 s: (a)
converted magnetic �ux density vectors; (b) Lorentz force vectors; (c) velocity vectors; (d) contours
of relative pressure; (e) contours of Joule heat; (f) contours of solid volume fraction; (g) contours of

temperature; (h) contours of liquid concentration.
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Figure 4. Continued.

Equation (6)=(7). Due to the highly weakened liquid �ow in the pure liquid region with the
much stronger static magnetic �eld applied, the heat transfer as well as the directional solidi�-
cation pattern in the casting domain approaches a pure heat conduction type, see Figures 3(d)
and 3(c).
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Figure 4. Continued.

On the right-hand sides of Equation (10), the �rst term in the Lorentz force expression, i.e.
fL�E×B or fLJG ×B, represents the EM force component that is generated by the interaction
between the inducted alternating current and the applied magnetic �eld. The function of this
induced Lorentz force part is to drive a metallic melt tending to �ow in the same direction
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Figure 4. Continued.

of this Lorentz force part [1, 12]. Obviously, this part of the Lorentz force is proportional to
both the strengths of the applied EM-�eld and its inducted current. To further demonstrate the
numerical modelling ability of the proposed model and numerical solution methods, Figure 4
gives another group of calculation results for the directional solidi�cation transport phenomena
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of a shaped alloy casting but under a harmonic alternating EM-�eld of di�erent strengths. The
results are at a cooling=solidi�cation time of 21:0 s and the model alloy for this simulation
group is the �(TiAl)-55 at% Al pseudo-binary system with a less dense solute of aluminium.
Figure 4(a) shows that the converted harmonic magnetic �ux density vectors inducted

in the directionally solidifying casting domains from the ANSYS-FEM analysis results with
sinusoidal alternating currents of 103, 2:5× 103 and 104 A t applied at a frequency of 2× 104 Hz.
It can be seen that, although these magnetic �ux density vectors have di�erent strengths they
show the same distribution pattern. In Figure 4(e), the Joule heats inducted in the casting ex-
hibit similar distribution behaviours, i.e. with similar contour curves but of higher values for
higher current-loads applied. However, the corresponding Lorentz forces show some dissimilar
distributions: for an even higher current-turns load applied the maximum EM forces induced
in the surface layer of the lower casting block change their acting directions, see Figure 4(b).
This phenomenon may be caused by the unsteady behaviours of the forced melt convections
in the liquid region. From Figure 4(c) it also can be seen that, when the applied current-load
increases from 2:5× 103 to 104 A t, the induced maximum �ow magnitude enhances from 19.8
to 191:7mm=s. This very fast rotating convection in turn leads to a negative pressure hole in
the lower block part of the casting, see Figure 4(d) of 104 A t case. The corresponding con-
tours of solid-volume fraction, temperature and liquid concentration of solute Al are shown
in Figures 4(f), 4(g) and 4(h), respectively.
Finally, it should be mentioned that all the above three groups of sample computations are

implemented on PC computers using the authors’ computer codes, and took a relatively short
CPU-time to �nish the numerical simulation for an entire directional solidi�cation transport
process under an EM-�eld. For example, on a PC computer equipped with a 2:4GHz CPU,
about 35 min CPU-times are required to �nish the computations for a whole 229 s directional
solidi�cation process of an Al-4.5% Cu shaped casting, and about 4:83 h CPU-times for a
2402 s directional solidi�cation problem of a �(TiAl)-55 at% Al shaped casting.

CONCLUSIONS

The presently proposed and extended Direct-SIMPLE method reduces the strongly pressure-
linked liquid �ow problems in a dendritic alloy solidi�cation process under an EM-�eld to a
major computation step to solve the linear algebraic Equations (30) for the pressure change
�eld during the time interval of �ti+1. Using this numerical algorithm, CPU-time-consuming
iterative computation e�orts can be avoided, especially for a 3-D solidi�cation case with small
mesh sizes. The present solidi�cation model and the numerical solution scheme also naturally
accommodate heat, mass and momentum transfer problems in a pure �uid system.
The liquid �ow phenomena involved in a dendrite solidi�cation process of alloy castings=

ingots under an EM-�eld generally are driven simultaneously by Lorentz forces, solidi�cation-
shrinkage and the gravity, and are highly non-linear and tightly pressure-linked. The sample
computations carried out for the heat and species mass transfers, and liquid �ow behaviours in
directionally solidifying shaped alloy castings under di�erent types of EM-�elds demonstrate
the feasibility and e�cient calculation performances for numerically solving a strongly coupled
solidi�cation transport problem.
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NOMENCLATURE

A2N a basic geometric unit vector for model reconstruction of any dendrite morphology
cP speci�c heat
C concentration of a component
D di�usion coe�cient of solute
f volume fraction
F force vector
g gravitational acceleration vector
h latent heat of fusion
k partition coe�cient
K permeability coe�cient
P pressure
Rf solidi�cation rate, Rf= @fS=@t
RFVY super�cial mass �ow components in y direction (=�LfLVy)
RFVZ super�cial mass �ow components in z direction (=�LfLVZ)
t time
T temperature
V velocity vector, V= i ·Vx + j ·Vy + k ·Vz
x; y; z 3-D rectangular spatial co-ordinates

Greek letters

� solidi�cation shrinkage, �=�S=�L − 1
� symbol for increment of a variable
� a normalized weighting vector for growing dendrite reconstruction with the basic

geometric units
� a non-dimensional parameter representing the sensibility of the interdendritic liquid

concentration-variation in response to the SBD, �=(1 + �)− k − fS=f2L
� thermal conductivity
� dynamic viscosity
� density
� electric conductivity
’ a non-dimensional micro-scale parameter representing the solid back-

di�usion (SBD) extent in solidifying dendrites, with a general form of
’=(DS(T )=Rf)� ·A2N

� a uni�ed micro-scale parameter accounting for any �nite SBD e�ects in TDMAC
term, �= � ·’=(1 + � ·’)

∇ di�erential operator vector, ∇= i · @=@x + j · @=@y + k · @=@z (in rectangular co-
ordinates)

Subscripts

0 under a given condition
B body force
G inducted by electromagnetic �eld
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j; k serial numbers set specifying the position of a control volume of (j; k)
J Joule heat
L liquid phase or Lorentz force
Liq liquidus
m volume-average of mixture
S solid phase
x; y; z representing the x, y or z direction component of a vector

Superscripts

i a serial number denoting a time at which various variable �elds are computed
* at solid=liquid interface or conjugate complex
′ temporal or revised value
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